Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

1-Methyl-2-(4-methylphenyl)-4-morpholinopyridazine-3,6(1H,2H)-dione

Andrzej Gzella,^a* Ewa Melzer,^a Michał S. Kaczmarek^b and Zenon Woźniak^b

^aDepartment of Organic Chemistry, Poznan University of Medical Sciences, ul. Grunwaldzka 6, 60-780 Poznań, Poland, and ^bOptics Division, Faculty of Physics, A. Mickiewicz University, ul. Umultowska 85, 61-614 Poznań, Poland Correspondence e-mail: akgzella@ump.edu.pl

Received 17 December 2007; accepted 2 January 2008

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.002 Å; R factor = 0.029; wR factor = 0.083; data-to-parameter ratio = 13.4.

The structure analysis of the title compound, $C_{16}H_{19}N_3O_3$, has been undertaken in order to facilitate the interpretation of ¹H and ¹³C NMR data and to determine the position of the morpholine residue in this nucleophilic substitution product. The main result is that the morpholine group, with a chair conformation, is connected at the 4-position of the pyridazine ring. The benzene and pyridazine rings make a dihedral angle of 62.17 (5)°. Molecules are linked into a two-dimensional network by non-classical $C-H \cdots O$ hydrogen bonds, in which O atoms serve as double or triple acceptors.

Related literature

For related literature, see: Allen et al. (1987); Bałoniak & Melzer (1979); Katrusiak et al. (2002).

Experimental

Crystal data C16H19N3O3 $M_r = 301.34$

Monoclinic, P2 a = 5.6246 (6) Å b = 8.8923 (6) Å c = 15.0842 (10) Å $\beta = 99.530(7)^{\circ}$ V = 744.03 (11) Å³ Z = 2

Data collection

Kuma Diffraction KM-4
diffractometer
Absorption correction: ψ scan
(North et al., 1968)
$T_{\min} = 0.716, \ T_{\max} = 0.794$
2796 measured reflections

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.029$	H-atom parameters constrained
$wR(F^2) = 0.082$	$\Delta \rho_{\rm max} = 0.15 \text{ e } \text{\AA}^{-3}$
S = 1.06	$\Delta \rho_{\rm min} = -0.13 \text{ e} \text{ Å}^{-3}$
2705 reflections	Absolute structure: Flack (1983);
202 parameters	1249 Friedel pairs
1 restraint	Flack parameter: 0.07 (16)

Table 1		
Hydrogen-bond geometry	(Å.	°).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
C17-H17A···O15	0.97	2.21	2.8636 (18)	124
C10−H10· · ·O15 ⁱ	0.93	2.53	3.3508 (19)	148
$C14-H14C\cdots O15^{i}$	0.96	2.53	3.419 (2)	155
$C5-H5\cdots O19^{ii}$	0.93	2.49	3.4124 (19)	174
$C21 - H21B \cdots O19^{ii}$	0.97	2.52	3.3036 (18)	137

Symmetry codes: (i) -x + 1, $y + \frac{1}{2}$, -z + 1; (ii) -x + 2, $y + \frac{1}{2}$, -z.

Data collection: KM-4 Software (Kuma, 1996); cell refinement: KM-4 Software; data reduction: KM-4 Software; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CF2177).

References

- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.
- Bałoniak, S. & Melzer, E. (1979). Acta Pol. Pharm. 36, 147-154.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Katrusiak, A. A., Katrusiak, A., Bałoniak, S. & Zielińska, K. (2002). Pol. J. Chem. 76, 45-56.
- Kuma (1996). KM-4 User's Guide. Version 8.0.1. Kuma Diffraction, Wrocław, Poland.
- North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Cu $K\alpha$ radiation $\mu = 0.78 \text{ mm}^{-1}$

 $0.38 \times 0.35 \times 0.30$ mm

2705 independent reflections 2646 reflections with $I > 2\sigma(I)$

intensity decay: <2%

T = 293 (2) K

 $R_{\rm int} = 0.025$ 2 standard reflections every 100 reflections

Acta Cryst. (2008). E64, o435 [doi:10.1107/S1600536808000111]

1-Methyl-2-(4-methylphenyl)-4-morpholinopyridazine-3,6(1H,2H)-dione

A. Gzella, E. Melzer, M. S. Kaczmarek and Z. Wozniak

Comment

Treatment of 4-bromo-1-methyl-2-(4-methylphenyl)-3,6-pyridazinedione with morpholine in anhydrous ethanol gives a mixture of *ipso* and *cine* substitution products; one of them, labelled as (I), was found as a precipitate (Bałoniak & Melzer, 1979). The crystal structure determination of (I) was carried out in order to facilitate the interpretation of 1 H and 13 C NMR data, to determine the position of the morpholine residue on the pyridazinedione ring, and to study the nature of the hydrogen-bond formation in the crystalline state.

The X-ray analysis revealed the molecular structure of (I) and its conformation and distortions induced in the pyridazine ring by substituents.

The geometry of the molecule of (I) is illustrated in Fig. 1. The pyridazine ring is nearly planar with an r.m.s. deviation of 0.0211 Å. The methyl, *p*-methylphenyl and morpholine substituents are connected at N1, N2 and C4, respectively. The mean plane of the benzene ring is oriented at an angle of $62.17 (5)^{\circ}$ to the mean plane of the pyridazine ring. The C4—C5 bond, 1.3500 (18) Å, belonging to the latter ring, is a double bond.

The ring bonds are conjugated, and the formally single bond C5—C6 is shorter by about 14 and the bond C3—C4 is longer by about 13σ than the normal (C?)Csp²—Csp²(?O) single bond [1.465 (1) Å; Allen *et al.*, 1987]. The elongation of the latter is a result of the presence of the morpholine residue at C4. The last two observations are consistent with that reported for 2-methyl-4-morpholino-1-phenyl-3,6-pyridazinedione (Katrusiak *et al.*, 2002).

The C3—N1 and C6—N1 distances are similar [1.3700 (18) and 1.3686 (17) Å, respectively] and are somewhat larger than a normal C—N tertiary amide distance [1.346 (5) Å; Allen *et al.*, 1987]. The sums of valency angles around N1 and N2 atoms are 356.5 and 357.4°. Atom C7 of the methyl group has a mutual orientation of synperiplanar and synclinal with respect to the atom C8 of the benzene ring [torsion angle C7—N1—N2—C8 = -37.79 (18)°].

The molecules in the crystal structure of (I) are linked *via* non-classical C—H···O hydrogen bonds (Table 1), forming a two-dimensional hydrogen-bond network parallel to the (101) plane (Figs. 2 and 3).

Experimental

Compound (I) was synthesized according to a literature procedure of Bałoniak & Melzer (1979). Crystals suitable for singlecrystal X-ray diffraction analysis were grown from ethanol by slow evaporation.

Refinement

All H atoms were placed in geometrically calculated positions and were refined with a riding model with C—H = 0.93-0.97Å and with $U_{iso}(H) = 1.2U_{eq}(C)$ or $1.5U_{eq}(C)$ for methyl H. The methyl groups were refined as rigid groups, allowed to rotate. The crystal polarity of (I) was established by refinement of the Flack (1983) parameter. The relatively large s.u. of the Flack parameter is due to the small contribution of atoms with measurable anomalous dispersion effects.

Figures

Fig. 1. The molecular structure of (I), showing the atomic labelling scheme. Non-H atoms are drawn as 30% probability displacement ellipsoids.

Fig. 2. Molecular packing and hydrogen bonds (dotted lines); symmetry codes: (i) 1 - x, 1/2 + xy, 1 - z, (ii) 2 - x, 1/2 + y, -z. H atoms not involved in hydrogen bonds have been omitted for clarity.

Fig. 3. Molecular packing and hydrogen bonds (dotted lines); symmetry codes: (i) 1 - x_1 1/2 + y, 1 - z, (ii) 2 - x, 1/2 + y, -z. H atoms not involved in hydrogen bonds have been omitted for clarity.

1-Methyl-2-(4-methylphenyl)-4-morpholinopyridazine-3,6(1H,2H)-dione

Crystal data	
C ₁₆ H ₁₉ N ₃ O ₃	F(000) = 320
$M_r = 301.34$	$D_{\rm x} = 1.345 {\rm ~Mg~m}^{-3}$
Monoclinic, P2 ₁	Melting point = $475-476$ K
Hall symbol: P 2yb	Cu K α radiation, $\lambda = 1.54178$ Å
<i>a</i> = 5.6246 (6) Å	Cell parameters from 53 reflections
<i>b</i> = 8.8923 (6) Å	$\theta = 14.8 - 30.5^{\circ}$
c = 15.0842 (10) Å	$\mu = 0.78 \text{ mm}^{-1}$
$\beta = 99.530 \ (7)^{\circ}$	T = 293 K
$V = 744.03 (11) \text{ Å}^3$	Block, colourless
<i>Z</i> = 2	$0.38 \times 0.35 \times 0.30 \text{ mm}$
Data collection	
Kuma Diffraction KM-4	2646 reflections with $I > 2\sigma(I)$

diffractometer	2646 reflections with $I > 2\sigma(I)$
Radiation source: fine-focus sealed tube	$R_{\rm int} = 0.025$
graphite	$\theta_{\text{max}} = 70.1^{\circ}, \ \theta_{\text{min}} = 3.0^{\circ}$
ω –2 θ scans	$h = -6 \rightarrow 6$
Absorption correction: ψ scan	$k = -10 \rightarrow 10$
(North <i>et al.</i> , 1968)	

$T_{\min} = 0.716, T_{\max} = 0.794$	$l = 0 \rightarrow 18$
2796 measured reflections	2 standard reflections every 100 reflections
2705 independent reflections	intensity decay: <2%

Refinement

Refinement on F^2	Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full	H-atom parameters constrained
$R[F^2 > 2\sigma(F^2)] = 0.029$	$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0538P)^{2} + 0.0723P]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
$wR(F^2) = 0.082$	$(\Delta/\sigma)_{\rm max} = 0.001$
<i>S</i> = 1.07	$\Delta \rho_{max} = 0.15 \text{ e } \text{\AA}^{-3}$
2705 reflections	$\Delta \rho_{min} = -0.13 \text{ e } \text{\AA}^{-3}$
202 parameters	Extinction correction: <i>SHELXL97</i> , Fc [*] =kFc[1+0.001xFc ² λ^3 /sin(2 θ)] ^{-1/4}
1 restraint	Extinction coefficient: 0.0345 (18)
Primary atom site location: structure-invariant direct methods	Absolute structure: Flack (1983); 1249 Fiedel pairs
Q 1	$F_{1} = 1$

Secondary atom site location: difference Fourier map Flack parameter: 0.07 (16)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against all reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
N1	0.4950 (2)	0.30562 (12)	0.24834 (8)	0.0381 (3)
N2	0.4743 (2)	0.15882 (12)	0.28125 (7)	0.0339 (3)
C3	0.5939 (3)	0.03738 (15)	0.25416 (8)	0.0325 (3)
C4	0.7375 (2)	0.06485 (14)	0.18118 (8)	0.0300 (3)
C5	0.7609 (3)	0.20788 (15)	0.15387 (9)	0.0359 (3)
H5	0.8658	0.2264	0.1135	0.043*
C6	0.6334 (3)	0.33293 (15)	0.18353 (9)	0.0369 (3)
C7	0.3067 (3)	0.41229 (19)	0.25978 (12)	0.0516 (4)
H7A	0.3504	0.4642	0.3159	0.077*
H7B	0.1577	0.3595	0.2596	0.077*
H7C	0.2876	0.4837	0.2114	0.077*
C8	0.3819 (2)	0.14755 (15)	0.36480 (8)	0.0326 (3)

С9	0.4878 (3)	0.22780 (18)	0.43950 (9)	0.0426 (3)
Н9	0.6209	0.2886	0.4367	0.051*
C10	0.3942 (3)	0.2170 (2)	0.51839 (10)	0.0450 (4)
H10	0.4645	0.2717	0.5684	0.054*
C11	0.1978 (3)	0.12600 (18)	0.52421 (9)	0.0408 (3)
C12	0.0964 (3)	0.04506 (18)	0.44820 (10)	0.0425 (3)
H12	-0.0346	-0.0175	0.4510	0.051*
C13	0.1868 (3)	0.05591 (17)	0.36881 (9)	0.0381 (3)
H13	0.1165	0.0018	0.3185	0.046*
C14	0.0953 (4)	0.1141 (2)	0.61008 (11)	0.0581 (5)
H14A	0.1592	0.0263	0.6427	0.087*
H14B	-0.0771	0.1064	0.5961	0.087*
H14C	0.1385	0.2020	0.6461	0.087*
O15	0.5897 (2)	-0.08309 (11)	0.29241 (7)	0.0475 (3)
N16	0.8655 (2)	-0.05448 (13)	0.15642 (7)	0.0339 (3)
C17	0.7617 (3)	-0.20541 (15)	0.13920 (9)	0.0369 (3)
H17A	0.6324	-0.2196	0.1737	0.044*
H17B	0.8843	-0.2807	0.1582	0.044*
C18	0.6651 (3)	-0.22466 (16)	0.04052 (10)	0.0407 (3)
H18A	0.6047	-0.3264	0.0299	0.049*
H18B	0.5311	-0.1561	0.0234	0.049*
O19	0.8440 (2)	-0.19668 (12)	-0.01424 (7)	0.0444 (3)
C20	0.9381 (3)	-0.04743 (17)	0.00089 (9)	0.0404 (3)
H20A	0.8098	0.0252	-0.0157	0.049*
H20B	1.0604	-0.0298	-0.0363	0.049*
C21	1.0461 (3)	-0.02754 (16)	0.09851 (9)	0.0386 (3)
H21A	1.1792	-0.0972	0.1142	0.046*
H21B	1.1088	0.0738	0.1082	0.046*
O22	0.6396 (2)	0.46036 (12)	0.15195 (8)	0.0522 (3)

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
N1	0.0510 (7)	0.0290 (6)	0.0389 (6)	0.0038 (5)	0.0206 (5)	0.0022 (5)
N2	0.0453 (7)	0.0291 (5)	0.0311 (5)	-0.0018 (5)	0.0176 (5)	0.0000 (4)
C3	0.0425 (7)	0.0313 (6)	0.0260 (5)	-0.0011 (5)	0.0122 (5)	-0.0013 (5)
C4	0.0367 (7)	0.0308 (6)	0.0236 (5)	-0.0012 (5)	0.0083 (5)	-0.0018 (4)
C5	0.0458 (8)	0.0327 (7)	0.0332 (6)	-0.0023 (6)	0.0181 (5)	0.0008 (5)
C6	0.0489 (8)	0.0287 (7)	0.0362 (7)	-0.0036 (6)	0.0157 (6)	-0.0004 (5)
C7	0.0578 (10)	0.0419 (8)	0.0617 (9)	0.0102 (7)	0.0289 (8)	0.0014 (7)
C8	0.0383 (7)	0.0353 (7)	0.0268 (6)	-0.0004 (5)	0.0131 (5)	-0.0021 (5)
C9	0.0449 (9)	0.0472 (8)	0.0393 (7)	-0.0128 (6)	0.0174 (6)	-0.0094 (6)
C10	0.0507 (9)	0.0540 (8)	0.0324 (6)	-0.0070(7)	0.0131 (6)	-0.0121 (6)
C11	0.0462 (8)	0.0462 (8)	0.0332 (7)	0.0025 (6)	0.0163 (6)	0.0023 (6)
C12	0.0399 (8)	0.0488 (8)	0.0418 (7)	-0.0085 (6)	0.0153 (6)	0.0005 (6)
C13	0.0385 (7)	0.0445 (8)	0.0319 (6)	-0.0063 (6)	0.0082 (5)	-0.0042 (5)
C14	0.0687 (11)	0.0728 (12)	0.0394 (8)	-0.0065 (9)	0.0278 (7)	0.0017 (8)
O15	0.0746 (7)	0.0334 (5)	0.0418 (5)	0.0051 (5)	0.0307 (5)	0.0098 (4)

N16	0.0431 (6)	0.0301 (6)	0.0311 (5)	. –	-0.0007 (5)	0.0140 (4)	-0.0022 (4)
C17	0.0511 (8)	0.0264 (6)	0.0363 (7)) –	-0.0004 (6)	0.0165 (6)	-0.0002(5)
C18	0.0489 (8)	0.0350 (7)	0.0415 (7)) –	-0.0048 (6)	0.0173 (6)	-0.0072 (6)
019	0.0602 (7)	0.0384 (6)	0.0397 (5)) –	-0.0032 (5)	0.0237 (5)	-0.0100(4)
C20	0.0514 (8)	0.0364 (7)	0.0389 (7)) –	-0.0003 (6)	0.0234 (6)	-0.0009 (6)
C21	0.0373 (7)	0.0382 (7)	0.0435 (7)) 0	0.0015 (6)	0.0163 (5)	-0.0039 (6)
022	0.0788 (8)	0.0287 (5)	0.0565 (6)) 0	0.0005 (5)	0.0326 (6)	0.0058 (5)
			()				
Geometric paran	neters (Å, °)						
N1—C6		1.3686 (17)	(C11—C14			1.5062 (18)
N1—N2		1.4083 (15)	(C12—C13			1.3796 (18)
N1—C7		1.4530 (19)	(С12—Н12			0.930
N2—C3		1.3700 (18)	(С13—Н13			0.930
N2—C8		1.4440 (15)	(С14—Н14	A		0.960
C3—O15		1.2188 (17)	(С14—Н14	В		0.960
C3—C4		1.4897 (16)	(С14—Н14	C		0.960
C4—C5		1.3500 (18)]	N16—C21			1.4648 (15)
C4—N16		1.3685 (17)]	N16—C17	,		1.4696 (17)
C5—C6		1.4344 (19)	(C17—C18			1.507 (2)
С5—Н5		0.930	(С17—Н17	ΥA		0.970
C6—O22		1.2319 (18)	(С17—Н17	'B		0.970
C7—H7A		0.960	(C18—O19)		1.4256 (16)
С7—Н7В		0.960	(С18—Н18	A		0.970
C7—H7C		0.960	(С18—Н18	B		0.970
C8—C13		1.376 (2)	(019—C20)		1.4330 (18)
С8—С9		1.3826 (19)	(C20—C21			1.507 (2)
C9—C10		1.3819 (18)	(С20—Н20	A		0.970
С9—Н9		0.930	(С20—Н20	B		0.970
C10-C11		1.384 (2)	(С21—Н21	А		0.970
C10—H10		0.930	(С21—Н21	В		0.970
C11—C12		1.393 (2)					
C6—N1—N2		120.42 (11)	(C11—C12	—H12		119.4
C6—N1—C7		118.75 (12)	(C8—C13–	C12		119.38 (12)
N2—N1—C7		117.31 (11)	(C8—C13–	-H13		120.3
C3—N2—N1		123.52 (11)	(C12—C13	—Н13		120.3
C3—N2—C8		118.10 (11)	(C11—C14	—H14A		109.5
N1—N2—C8		115.76 (10)	(C11—C14	—H14B		109.5
O15—C3—N2		120.18 (11)]	H14A—C1	14—H14B		109.5
O15—C3—C4		123.32 (12)	(C11—C14	—H14C		109.5
N2—C3—C4		116.39 (11)]	H14A—C1	14—H14C		109.5
C5-C4-N16		124.41 (12)]	H14B—C1	14—H14C		109.5
C5—C4—C3		118.17 (11)	(C4—N16-	C21		118.94 (11)
N16-C4-C3		116.66 (11)	(C4—N16-	C17		123.00 (11)
C4—C5—C6		123.79 (12)	(C21—N16	—C17		109.79 (10)
C4—C5—H5		118.1]	N16—C17			110.23 (11)
С6—С5—Н5		118.1]	N16—C17	—Н17А		109.6
O22—C6—N1		119.68 (12)	(C18—C17	—Н17А		109.6
O22—C6—C5		123.02 (12)	N16—C17—H17B			109.6	

N1—C6—C5	117.28 (11)	C18—C17—H17B		109.6
N1—C7—H7A	109.5	H17A—C17—H17B		108.1
N1—C7—H7B	109.5	O19—C18—C17		112.26 (12)
H7A—C7—H7B	109.5	O19—C18—H18A		109.2
N1—C7—H7C	109.5	C17—C18—H18A		109.2
H7A—C7—H7C	109.5	O19-C18-H18B		109.2
H7B—C7—H7C	109.5	C17—C18—H18B		109.2
C13—C8—C9	120.59 (12)	H18A—C18—H18B		107.9
C13—C8—N2	118.96 (11)	C18—O19—C20		110.30 (10)
C9—C8—N2	120.45 (12)	O19—C20—C21		110.04 (12)
C10—C9—C8	119.45 (14)	O19—C20—H20A		109.7
С10—С9—Н9	120.3	C21—C20—H20A		109.7
С8—С9—Н9	120.3	O19—C20—H20B		109.7
C9—C10—C11	121.15 (14)	C21—C20—H20B		109.7
С9—С10—Н10	119.4	H20A—C20—H20B		108.2
C11—C10—H10	119.4	N16-C21-C20		110.87 (11)
C10-C11-C12	118.17 (12)	N16—C21—H21A		109.5
C10-C11-C14	121.26 (14)	C20—C21—H21A		109.5
C12—C11—C14	120.57 (15)	N16-C21-H21B		109.5
C13—C12—C11	121.25 (13)	C20-C21-H21B		109.5
C13—C12—H12	119.4	H21A—C21—H21B		108.1
C6—N1—N2—C3	2.4 (2)	N1—N2—C8—C9		-53.57 (18)
C7—N1—N2—C3	160.94 (14)	C13—C8—C9—C10		-0.8 (2)
C6—N1—N2—C8	163.62 (12)	N2-C8-C9-C10		179.08 (14)
C7—N1—N2—C8	-37.79 (18)	C8—C9—C10—C11		0.7 (3)
N1—N2—C3—O15	171.72 (13)	C9-C10-C11-C12		0.1 (3)
C8—N2—C3—O15	10.9 (2)	C9-C10-C11-C14		-179.93 (16)
N1—N2—C3—C4	-4.50 (19)	C10-C11-C12-C13		-0.7 (2)
C8—N2—C3—C4	-165.37 (11)	C14—C11—C12—C13		179.35 (15)
O15—C3—C4—C5	-169.22 (15)	C9—C8—C13—C12		0.3 (2)
N2—C3—C4—C5	6.88 (19)	N2-C8-C13-C12		-179.65 (13)
O15—C3—C4—N16	1.3 (2)	C11—C12—C13—C8		0.5 (2)
N2-C3-C4-N16	177.35 (12)	C5-C4-N16-C21		1.9 (2)
N16-C4-C5-C6	-177.11 (13)	C3—C4—N16—C21		-167.96 (11)
C3—C4—C5—C6	-7.4 (2)	C5-C4-N16-C17		-143.29 (14)
N2—N1—C6—O22	176.13 (14)	C3-C4-N16-C17		46.90 (17)
C7—N1—C6—O22	17.8 (2)	C4—N16—C17—C18		93.59 (14)
N2—N1—C6—C5	-2.2 (2)	C21—N16—C17—C18		-54.29 (15)
C7—N1—C6—C5	-160.51 (14)	N16-C17-C18-O19		55.96 (15)
C4—C5—C6—O22	-173.17 (15)	C17—C18—O19—C20		-58.23 (16)
C4—C5—C6—N1	5.1 (2)	C18—O19—C20—C21		58.88 (15)
C3—N2—C8—C13	-71.32 (17)	C4—N16—C21—C20		-92.81 (14)
N1—N2—C8—C13	126.34 (14)	C17—N16—C21—C20		56.56 (15)
C3—N2—C8—C9	108.77 (16)	O19—C20—C21—N16		-58.94 (14)
Hydrogen-bond geometry (Å, °)				
D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H···A
C17—H17A…O15	0.97	2.21	2.8636 (18)	124

C10—H10…O15 ⁱ	0.93	2.53	3.3508 (19)	148
C14—H14C…O15 ⁱ	0.96	2.53	3.419 (2)	155
C5—H5…O19 ⁱⁱ	0.93	2.49	3.4124 (19)	174
C21—H21B···O19 ⁱⁱ	0.97	2.52	3.3036 (18)	137
Symmetry codes: (i) $-x+1$, $y+1/2$, $-z+1$; (ii) $-x+2$	2, $y+1/2$, $-z$.			

Fig. 1

Fig. 2

